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In  this paper, the analysis on secondary flow in curved elliptic pipes of Topakoglu 
& Ebadian (1985) has been extended up to a point where the rate-of-flow expression 
is obtained for any value of flatness ratio of the elliptic cross-section. The analysis 
is based on the double expansion method of Topakoglu (1967). Therefore, no 
approximation is involved in any step other than the natural limitation of the finite 
number of calculated terms of the expansions. The obtained results are systematically 
plotted against the curvature of centreline of the curved pipe for different values of 
Reynolds number. 

1. Introduction 
For flows through curved pipes of elliptical cross-section, very few theoretical and 

experimental investigations are available (Berger, Talbot & Yao 1983). The relevant 
studies are by Thomas & Walters (1965), Srivastava (1980), Takami & Sudou (1984) 
and Ito (1969). In the analysis of the study by Thomas & Walters (1965), only the 
secondary flow is investigated by using the Dean’s (1927, 1928) formulation in which 
the simplified forms of momentum and continuity equations have been used. In 
Srivastava’s (1980) analysis, almost the entire solution is based on a numerical 
approach, in which no explicit expressions have been presented. Also, his results of 
the numerical calculations are presented without any detail for only six selected 
flatness ratio values (four for horizontally placed ellipse and two for vertically placed 
ellipse). However, these results do not agree with the physical fact that an increasing 
secondary flow (for sections with larger flatness ratios) requires a decreasing rate of 

‘flow. In  Takami & Sudou (1984), the solution of the problem is referred to the result 
of Ito (1969) which is an approximation solution based on a boundary-layer approach. 
As a result, in Takami & Sudou (1984) even the independent pertinent parameters 
of the problem could not have been found. 

Another recent study for flow in curved elliptic pipes is due to Topakoglu & 
Ebadian (1985) in which only the secondary flow is investigated in a proper and 
systematic manner. 

In this present paper, the analysis of Topakoglu & Ebadian (1985) has been 
extended up to a point where the rate of flow expression is obtained for any value 
of flatness ratio of the elliptic cross-section. The analysis is based on the double 
expansion method of Topakoglu (1967). Therefore, no approximation is involved in 
any step other than the natural limitation of the finite number of calculated terms 
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of the expansions. The obtained results are systematically plotted against the 
curvature of centreline of the curved pipe for different values of Reynolds number. 

2. Governing equations for primary and secondary flows 
The curved-pipe geometry is shown in figure 1, where OX, represents the axis of 

symmetry of the curved pipe. This figure also shows an arbitrary cross-section of the 
elliptic pipe in a meridianal plane with an azimuth angle 8 relative to the fixed 
coordinate axes OX, X, X,. 

The elliptic cross-section considered here has a semi-major axis A and a semi-minor 
axis B. In addition, the section is oriented in such a way that the major axis is along 
the direction of curvature of the curved pipe, and the minor axis is along the direction 
of the axis of symmetry of the curved pipe. 

The dimensionless primary flow-velocity component w, and the dimensionless 
stream function 4, satisfy the following equations (cf. Topakoglu 1967) : 

Subscripts x and y indicate partial differentiation with respect to these variables 
respectively. 

3. Expansions of primary and secondary flows in terms of curvature 

in elliptic coordinates, respectively are (cf. Topakoglu & Ebadian 1985) 
The first terms of the expansions of the primary and secondary flows, expressed 

(3.1) wo = Re (woo - wo2 cos 27), 

where 

and 

=-Re2(-) l + m 2 2  m(4 1 sinq-m2F, sin37+m4F, sin5~-meF, sinyy), (3.2) 

where the expressions of the functions F,-F, for horizontally and vertically placed 
elliptic peripheries are given in Topakoglu & Ebadian (1985). Nevertheless, in the case 
of horizontally placed elliptic peripheries, simpler forms of these expressions are 
developed and are given in the Appendix. 
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FIGURE 1. Definition of coordinates. 

4. Second term of the primary flow 
The second term of the primary flow satisfies the following Poisson's equation : 

The terms in the above equation can be expressed in terms of the elliptic 
coordinates 6 and q ,  defined by the relations 

y = 1 = ( E + ~ )  m2 cosq, 2 = -(6-$) 1 sinq. 
1 +mZ 

The solution of (4.1), after the above transformation and by the proper boundary 
condition (Topakoglu & Ebadian 1985) is obtained as 

w1 = Re (wll cos q--m2w,, cos 31;) 

+ Re3 (w,, cos q - m2w33 cos 37 + m4wS5 cos 57 - m6ws, cos 77 + m8w3B Qq), (4.3) 

where the coefficients wi, are algebraic functions of f  and m. Each of these functions 
is obtained explicitly in terms of 6 and m but they are not included here because their 
forms are too complicated. However, they will affect the rate-of-flow expression. 

It must be noted that in the special case of m = 0, the expression for w1 reduces 
to the corresponding expression for a circular curved pipe (Topakoglu 1967). 
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5. Second term of the secondary flow 

biharmonic eauation : 
The second term of the secondary flow satisfies the following non-homogeneous 

After transforming each term into elliptic coordinates f and 7, the solution of (5.1) 
under the proper boundary conditions (Topakoglu & Ebadian 1985) is obtained as 

q5z = Re2 (g22 sin 27 - m2gz4 sin47 + m4g2, sin 67 - msg2, sin 87) 

+ Re4 (g42 sin 27 - m2g4, sin 47 + m4g4, sin 67 - m8g4, sin 87 

+ m8g410 sin 107 - m10g41z sin 127 + m12g4,4 sin 147), (5.2) 

where the coefficients gu and gt jk  are algebraic functions of f and m. Each of these 
functions is obtained explicitly in terms of f and m, but their forms are too 
complicated to be given here. However, they will affect the rate-of-flow expression. 

In the special case of m = 0, it is verified that the expression for $2 reduces to the 
corresponding expression for a circular curved pipe (Topakoglu 1967). 

6. Third term of the primary flow 
The third term of the primary flow satisfies the following Poisson’s equation: 

After transforming each term into a new form in terms of elliptic coordinates f and 
7, the solution of (6.1) under the proper boundary conditions (Topakoglu & Ebadian 
1985) is obtained as 

wz = Re (wl0 - w12 cos 27 + m2w14 cos 47) 

+ Re3 (w30 - w32 cos 27 + mzw34 cos 47 - m4w3, cos 67 

+ m6w38 cos 87 - 

+ Re5 (w50 - w52 cos 27 + m2w54 cos 47 - m4w5, cos 67 

+ rnBw5, cos 87 - m8w510 cos 107 

+ m10w512 cos 127 - m12w514 cos 147 

cos 107) 

+m14~51a cos 167), (6.2) 

where the coefficients wtj and wtjk are algebraic functions of f and m. Each of these 
functions is obtained explicitly in terms of f and m, but their forms are too 
complicated to be given here. However, they will affect the rete-of-flow expression. 

In the special case of m = 0, i t  is verified that the expression for w2 becomes equal 
to the corresponding expression for a circular curved pipe (Topakoglu 1967). 
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FIGURE 2. Rate of flow reduction (rn = 0 ;  c1 = 1.00). 

7. Rate of flow 
The mass rate of flow Q through a curved pipe with an elliptic cross-section is 

where p is the density and bs is the element of area expressed in elliptic coordinates 
as 

After substituting dS and W by using (3.1), (4.3), (6.2), one obtains 

Q = 27cpAvRe {Pol + h2[qal + Re2q2, + Re4q2,] + higher-order terms}, (7.3) 

where the factors Pol, qZ1, q2, and qa5 are functions of m. Their expressions have been 
obtained explicitly in terms of m. They are not given here owing to their complexities. 
However, the resulting curves presented in this paper are based on these functions. 

The ratio of rate of flow in a curved pipe of elliptic cross-section to that of a straight 
pipe having the same cross-section and the same pressure gradient as that measured 
along the centreline of the curved pipe, from (7.3), is 

P261 (7 *4) 
QO [Po, Po1 Q O l  

- Q = 1 + A 2  Qzl+ReZPas+Re4- . 

The above expression, (7.4), involves only the most significant contribution of the 
effect of the curvature. The effect of the other terms can be obtained when further 
terms of the expansions are calculated. It is seen that the rate-of-flow ratio, besides 
depending on the shape of the section (the ellipticity factor m) and the curvature, 
also depends on the Reynolds number Re. This dependence will be presented in the 
next section. 
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FWURE 3. Rate of flow reduction (m = 0.07; c1 = 0.98). The dotted curves refer to 
Srivastava (1980). 
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FIGURE 4. Rate of flow reduction (m = 0.16; c1 = 0.90). 
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FIQURE 5. Rate of flow reduction (m = 0.27; c1 = 0.75). The dotted curves refer to 
Srivastava (1980). 
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FIGURE 6. Rate of flow reduction (m = 0.30; c1 = 0.70). 
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FIGURE 7. Rate of flow reduction (m = 0.41 ; c1 = 0.50). The dotted curves refer to 
Srivastava (1980). 

8. Results and discussion 
Using the obtained results and some selected values for the flatness ratios of 

the periphery of the cross-section, the rate-of-flow reduction (1 - &/QJ is plotted 
systematically against the curvature of the elliptic pipe for different values of the 
Reynolds number. The five flatness ratios are selected m c1 = 1.0, 0.9, 0.7, 0.5, 0.3. 
In  order to compare the results directly with the findings of Srivastava (1980), the 
flatness ratio of the ellipse is defined as the square of the ratio of the minor to the 
major radius of the elliptic periphery (c ,  = B2/A2).  Furthermore, three more values 
of c ,  (0.98,0.75 and 0.25) are plotted to compare the results of Srivastava (1980) and 
the present paper. 

The rate-of-flow-reduction curves corresponding to the eight values of c, are 
presented in figures 2-9, successively. In  each case, the Reynolds numbers are selected 
as such that a fairly wide coverage is obtained. 

In general, a positive reduction ratio is observed in each case. However, it  must 
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FIQURE 8. Rate of flow reduction (m = 0.54; cl = 0.30). 
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FIQURE 9. Rate of flow reduction (m = 0.57; c1 = 0.25). The dotted curves, which are combined 
into a single line, refer to Srivastava (1980). 

be noted that the presented results reflect only the effect of the most significant term 
of the curvature on the rate of flow. The effect of the other terms can only be seen 
if further terms of the expansions are calculated. 

The first case of c1 = 1.0, which is the circular cross-section, is included in order 
to be able to see the gradual transition from circular pipe to an elliptic pipe. For 
comparison, the findings of Srivastava (1980) are also plotted as dotted curves for 
the cases of c1 = 0.98, 0.75, 0.50 and 0.25. 

When figures 2-9 are compared to each other, one can see that for a fixed value 
of the Reynolds number and at  fixed curvature, as the flatness ratio decreases, the 
rate of flow reduction decreases as well. This is because a smaller flatness ratio means 
a smaller secondary flow, which also means a smaller rate of flow reduction. 

On the other hand, the results of Srivastava (figures 3, 5,  7 and 9) do not agree 
with the above fact. In  his case, for a fixed Reynolds number and a fixed curvature, 
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a smaller flatness ratio results in a higher rate of flow reduction. This discrepancy 
is especially noticeable for c1 = 0.25 in figure 9 in which all dotted lines are combined 
into a single line, and the above stated fact is totally unobservable. 

In the literature no experimental result using the pertinent parameters for the flow 
in a curved pipe has been reported. Consequently, correlation of analytical studies 
with experiments is not possible. 

The results presented in this paper were obtained in the course of research 
sponsored by the National Science Foundation, Washington, D.C., under the Grant 
Rll-8305297 to Southern University and its precursors. 

The authors appreciate the contributions made by Mr Chiang Lee in various stages 
of this research. 

e a = l - - ,  ma e,=I--, ma elo=l--  mlo e =l-- m14 
610 ' 1 4  614 ' la ta 

where 

clo = 6( 1 - mlO) - 2m2( 1 -ma) - 3m4( 1 - ma), 

c14 = 1-m16, b, = 1-m2, 

1 1 

U1 U1 
A(1) = - (Cl0 u4 - C14 us), B(1) = - (Cl0 u2 - C14 us), 

1 
(5ci4 U2-9b1 u4)9 B(7) = - 

u6 

u1 = 3( 1 -ma) (1 +ma) - (1 + mz) (1 -ma), 

u2 = 5( 1 -m2) (1 +mlO) - (1 +m2) (1 -mlo 1 7  

u3 = 7(1 -m2)  (1 +m14) - (1 +ma) (1 -m14 1 7  

up = 5(1 -ma) (1 +mlO) - 3( 1 + m6) (1 -ml0 ) I  

u5 = 7( 1 - m6) (1 + m14) - 3( 1 + ms) (1 - m14 1. 
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